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Abstract

Background: The microorganisms that inhabit food processing environments (FPE) can strongly influence the
associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant
microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat
processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a
detailed analysis of a newly opened pork cutting plant over 1.5 years of activity.

Results: We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2
months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter,
Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An
increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to
Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region,
was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-
producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities
started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently
co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly
detected at the later sampling times in drains.

Conclusions: The observations made suggest that pig carcasses were a source of resistant bacteria that then
colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces,
represented a reservoir for the spread of ARGs in the meat processing facility.
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Background
Food processing environments (FPE) can be an im-
portant source of microorganisms that cross-
contaminate raw materials and processed foods, with
important implications for food quality and safety [1].
Microorganisms can continuously access FPE through
the entry of new raw materials and utensils, the flow
of workers or the use of cleaning water, and some of
them persist in the environment through the presence
of harbourage sites in processing plants, surfaces that
are difficult to clean or disinfect, or organic residues
from food processing which can create microenviron-
ments that support microbial growth [2, 3]. Moreover,
specific taxa or lineages/strains that possess enhanced
ability to form biofilms, survive sanitation, and/or
mount adaptive stress responses are particularly well
equipped to persist [4, 5].
The possibility that FPE may act as a reservoir of

antibiotic-resistant (AR) microorganisms and a hotspot
for antibiotic resistance genes (ARGs) transmission is a
concern in meat processing plants [6]. The overuse of
antibiotics as therapeutic, metaphylactic, or prophylactic
agents in intensive rearing of food production animals,
linked to the cross-contamination of meat with gut AR
bacteria during evisceration and other dressing activities
at slaughterhouses, may result in the introduction of AR
microbes in meat processing plants [7]. In addition, cer-
tain biocides used for sanitation can induce the selection
of enhanced resistance to other unrelated compounds,
such as some antibiotics [6]. However, these poorly
understood phenomena have not been directly con-
firmed in real industrial settings, and no single study has
followed the emergence and establishment of AR
bacteria in FPE from the moment a facility begins
operations.
To date, culture-dependent analyses, coupled with the

typing of recovered isolates through molecular tech-
niques, have been widely used for unearthing routes of
microbial cross-contamination to food and identifying
episodes of persistence in FPE [8]. These approaches
generally focus on mapping the distribution of specific
environmentally transmitted pathogenic bacteria of high
concern (e.g., Listeria monocytogenes) [9]. Recent
advances in high-throughput sequencing technologies
allow to perform larger-scale untargeted analyses of the
resident microbial communities in FPE, which facilitate
the tracking of a wider range of microbial agents and
their associated gene repertoires [10]. However, with the
exception of a few studies limited to the characterization
of FPE through 16S rRNA gene amplicon sequencing
[11–16], detailed culture-independent whole metagen-
ome sequencing analyses have not yet been undertaken
to characterize temporal shifts in the structure and resis-
tome of their microbial populations.

Over the last decade, some pioneering studies character-
ized the microbiome of built environments and demon-
strated its impact on the human microbiome and health
status [17]. These initial experiences mainly focused on
household domestic and hospital settings [18–22] but few
studies have been done on food processing facilities [23].
The microbiome colonization of new environments is
commonly characterized by an initial fluctuating period
with high diversity values until the establishment of a
more stable microbiome, as has been reported on infants
[24], fermented foods [25], or building materials under
high humidity conditions [20]. Considering these previous
findings, we hypothesize that the microbiome of a newly
established food manufacturing facility goes through
waves of succession before becoming relatively stable and
that daily processing and sanitation activities impact on
the burden and composition of antimicrobial resistance
determinants, leading to the establishment of reservoirs or
hotspots of antimicrobial-resistant microorganisms in
FPE. To test this hypothesis, here we present the results of
a longitudinal 18-month survey of the bacterial and resis-
tome diversity encountered within the FPE of a newly
constructed pork cutting plant. In total, 1374 swab sam-
ples were collected from multiple surfaces on ten sam-
pling visits, 229 sample pools were analysed through
shotgun metagenomic sequencing, and a collection of 360
isolates from the Enterobacteriaceae, Pseudomonadaceae,
Enterococcaceae, and Staphylococcaceae families was
characterized to monitor the occurrence of phenotypes
and genotypes associated with resistance to antibiotics of
critical importance.

Results
The taxonomic diversity in FPE increased over time
Samples were categorized to one of three temporal
groups, i.e., T1 for samples before the processing plant
became operational, T2 for samples within the first 2
months of operation (i.e., linked to short-term changes
in the microbiome), and T3 for samples from 2 to 18
months of operation (i.e., associated with long-term
changes in the microbiome) (Fig. 1).
Species richness and the Simpson index average values

were similar on visits belonging to the same time cat-
egory (see Additional file 1: Figure S1), but significantly
increased (p < 0.05) from T1 and T2 to T3 (Fig. 2A).
This pattern was particularly evident for drains, floors,
equipment, and meat surfaces (see Additional file 1:
Figure S2A), and for all processing rooms except R1 in
the case of the Simpson index (see Additional file 1:
Figure S2B). Drains were the surfaces with the highest
alpha diversity regardless of the sampling period (see
Additional file 1: Figure S3A), while no major differences
were observed among rooms (see Additional file 1:
Figure S3C).
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Sampling time, surface type, and processing room had
a significant influence on the taxonomic profile of sam-
ples (adonis, p = 0.002) and explained 22.8%, 14.5%, and
5.3% of the variation observed, respectively (see
Additional file 2: Table S1). Ordination analyses resulted

in T3 samples grouping separately from T1 samples,
while T2 samples showed an intermediate profile
between them (Fig. 2B). β-dispersion was significantly
higher at T3 than at T1 and T2 (p < 0.001) (Fig. 2B).
Drains were the surfaces with the highest β-dispersion,

Fig. 1 Schematic map of the meat processing facility and summarized information on the surfaces sampled per room. The 10 visits performed
over 1.5 years were grouped in 3 time categories (indicated at the top of the figure). The different surfaces sampled at each processing room are
indicated in the map, together with their classification as food contact surfaces (FCS) or non-food contact surfaces (NFCS). Asterisks in the “Room”
legend indicate those room groups comprising more than one physical room
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