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REVIEW

Carbapenem-resistant Klebsiella pneumoniae: the role of plasmids in emergence, 
dissemination, and evolution of a major clinical challenge
Vincenzo Di Pilatoa*, Simona Pollinib,c*, Vivi Miriagoud, Gian Maria Rossolinib,c and Marco Maria D’Andreae

aDepartment of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy; bDepartment of Experimental and Clinical 
Medicine, University of Florence, Florence, Italy; cMicrobiology and Virology Unit, Careggi University Hospital, Florence, Italy; dLaboratory of 
Bacteriology, Hellenic Pasteur Institute, Athens, Greece; eDepartment of Biology, University of Rome Tor Vergata, Rome, Italy

ABSTRACT
Introduction: Klebsiella pneumoniae is a major agent of healthcare-associated infections and a cause of 
some community-acquired infections, including severe bacteremic infections associated with metastatic 
abscesses in liver and other organs. Clinical relevance is compounded by its outstanding propensity to 
evolve antibiotic resistance. In particular, the emergence and dissemination of carbapenem resistance in 
K. pneumoniae has posed a major challenge due to the few residual treatment options, which have only 
recently been expanded by some new agents. The epidemiological success of carbapenem-resistant 
K. pneumoniae (CR-Kp) is mainly linked with clonal lineages that produce carbapenem-hydrolyzing 
enzymes (carbapenemases) encoded by plasmids.
Areas covered: Here, we provide an updated overview on the mechanisms underlying the emergence 
and dissemination of CR-Kp, focusing on the role that plasmids have played in this phenomenon and in 
the co-evolution of resistance and virulence in K. pneumoniae.
Expert opinion: CR-Kp have disseminated on a global scale, representing one of the most important 
contemporary public health issues. These strains are almost invariably associated with complex multi- 
drug resistance (MDR) phenotypes, which can also include recently approved antibiotics. The hetero
geneity of the molecular bases responsible for these phenotypes poses significant hurdles for ther
apeutic and diagnostic purposes.
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1. Introduction

Klebsiella pneumoniae is a major pathogen in the nosocomial 
setting, where it can be responsible for a broad repertoire of 
healthcare-associated infections (HCAIs). In a recent survey on 
HCAIs in Europe, K. pneumoniae ranked third among isolated 
microorganisms, with a prevalence of 10.4% in acute-care 
hospitals and of 11.4% in long-term care facilities [1]. Outside 
Europe, K. pneumoniae ranked first in some African countries 
(with prevalences higher than 20%) [2,3], third in the U.S.A. 
(with prevalence of 9.9%) [4], and first to third in some Asian 
countries (with prevalences ranging from 7.3 to 15%) [5,6]. 
K. pneumoniae can also be a cause of community-onset infec
tions, including urinary tract infections, pneumonia, skin and 
soft tissue infections, and even severe bacteremic infections 
associated with abscesses in the liver and in other sites, 
caused by strains with increased virulence (hypervirulent) 
[7–10].

The clinical relevance of K. pneumoniae is compounded by 
its notable propensity to acquire resistance to all classes of 
potentially active antibiotics, including carbapenems, which 
have been the cornerstone for treatment of severe infections 
by Enterobacterales resistant to expanded-spectrum cephalos
porins and fluoroquinolones. Indeed, among Enterobacterales, 

K. pneumoniae is the species most affected by carbapenem 
resistance, which in some settings has reached remarkably 
high rates (e. g., 67% in Greece, 65% in Iran, 64% in Russia, 
57% in India, 50% in Saudi Arabia, 45% in Peru, 33% in Italy, 
27% in China, 26% in Argentina, 24% in Brazil) [6,11], with an 
outstanding burden at the global level [12,13]. Consequently, 
carbapenem-resistant K. pneumoniae (CR-Kp) is currently con
sidered among major public health challenges, and has been 
included in the WHO priority list of critical resistant pathogens 
for discovery and development of new antimicrobials [14].

In CR-Kp, resistance is mostly due to the acquisition of 
various genes encoding β-lactamases capable of degrading 
carbapenems (carbapenemases). The most prevalent carbape
nemases detected in K. pneumoniae include KPC-type (mole
cular class A, active-site serine), OXA-48-type (molecular class 
D, active-site serine), and NDM-, VIM-, and IMP-type (molecular 
class B, zinc metallo-enzymes) [15]. Other carbapenemases 
have also been rarely reported (e. g., GES-5, SFC-1, NMC-A, 
BKC-1 and SME-1 of molecular class A, AIM-1, and SIM-1 of 
molecular class B, and OXA-427 of molecular class D) [16–19], 
but their contribution to carbapenem resistance in this species 
has remained marginal so far, and their detection is often 
restricted to single countries. Porin alterations, leading to 
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reduced carbapenems entry into the periplasmic space, can 
also contribute to carbapenem resistance, and to increase the 
resistance level when present in combination with carbapene
mases, or even extended-spectrum or AmpC-type β-lacta
mases with weak carbapenemase activity [20,21].

Carbapenemases are typically plasmid-encoded enzymes, so 
that plasmids have played a very major role in the emergence and 
dissemination of carbapenem resistance in K. pneumoniae, while 
the association of carbapenemase-encoding plasmids with certain 
successful clonal lineages provided formidable platforms for the 
epidemic/pandemic propagation of these resistance vehicles.

The scope of this review article is to provide an updated 
overview on the contribution of resistance plasmids to the 
evolution of the ongoing pandemic challenge represented 
by CR-Kp.

2. Epidemiology, evolutionary trajectories, and 
clinical challenges of the major plasmid-mediated 
carbapenemases in K. pneumoniae

So far, KPC-type carbapenemases have experienced the broadest 
distribution of all carbapenem-hydrolyzing enzymes. KPC was first 
described in the U.S.A. in 1996 [22]. Thenceforth, these resistance 
determinants, mainly represented by the KPC-2 and KPC-3 var
iants, have become rapidly endemic in the Americas, southern 
Europe and some parts of Asia [15]. KPC carbapenemases exhibit 
a broad spectrum of activity, including penicillins, cephalosporins, 
aztreonam, and carbapenems, and are not efficiently inhibited by 
older β-lactam-based β-lactamase inhibitors (i. e., clavulanic acid, 
tazobactam, sulbactam). Enmetazobactam is a somewhat better 
inhibitor of KPC enzymes, but yet unable to restore activity of 
cefepime against most KPC-producing strains, while novel non β- 
lactam-based β-lactamase inhibitors, such as diazabicyclooctanes 
(e. g., avibactam and relebactam) and boronates (e. 
g., vaborbactam), are usually able to efficiently inhibit these 
enzymes and restore the antimicrobial activity of older β-lactams 

(e. g., ceftazidime and carbapenems) against KPC-producing 
strains [23]. In fact, these new β-lactam plus β-lactamase inhibitor 
combinations (BLICs) have become the standard-of-care for infec
tions caused by CR-Kp producing KPC-type enzymes (KPC-Kp), 
given their outstanding superiority vs. older colistin-based regi
mens [24,25]. However, KPC-type carbapenemases exhibit 
a remarkable evolutionary potential, and a number of novel KPC 
variants have recently emerged. These enzymes differ from their 
ancestors (i. e., KPC-2 or KPC-3) by single amino acid substitutions 
(e. g., the D179Y amino acid substitution in the Ω-loop of KPC-3, 
leading to KPC-31) and/or by small insertions/deletions in certain 
protein domains (e. g., in the loop 237–243 and in the loop 266– 
275), which can confer resistance to ceftazidime/avibactam (CZA), 
the first of the new BLICs introduced in clinical practice [26,27]. 
Several of these KPC variants also differ by other resistance phe
notypes (e. g., lower resistance levels to carbapenems, aztreonam, 
piperacillin/tazobactam and decreased susceptibility to cefidero
col) [28,29], with relevant consequences in terms of identification 
of the resistance mechanisms and, possibly, of therapeutic 
approach [27,30]. The emergence of KPC variants resistant to 
CZA represents a matter of increasing concern in settings of 
KPC-Kp endemicity, while the plasmid-encoded nature of these 
enzymes may facilitate their rapid dissemination in the clinical 
setting [31,32].

Emergence of the IMP- and VIM-type metallo-β-lactamases 
(MBLs) in K. pneumoniae also dates back to the early 1990s and 
2000s, respectively, with initial sporadic reports [33–38]. In the 
following years, these enzymes experienced dissemination in 
some geographic areas (e. g., Greece, for VIM-type enzymes, 
and the Asia-Pacific region for IMP-type enzymes) [39,40], but 
a broader dissemination at the global level has not been 
observed. On the other hand, NDM-type MBLs and OXA-48- 
like enzymes were detected more recently (in the first decade 
of 2000) [41,42], but have experienced an overall broader 
dissemination at the global level, becoming the most preva
lent carbapenemases in Asia, Middle East, and North Africa 
and also in some areas of the European continent (e. 
g., Poland, the Balkan region, and UK) [43,44].

MBLs can confer broad-spectrum β-lactam resistance, includ
ing penicillins, cephalosporins, and carbapenems, while mono
bactams are not hydrolyzed by these enzymes. Notably, MBLs 
are not inhibited by the conventional β-lactam-based β-lacta
mase inhibitors nor by the novel inhibitors that have entered 
clinical practice, including avibactam, relebactam, and vabor
bactam [23]. Consequently, MBL-producing CR-Kp are currently 
more difficult to treat than KPC-Kp [45,46]. In fact, beyond older 
drugs (e. g., colistin, fosfomycin, tigecycline), only cefiderocol 
and the combination between aztreonam and CZA are among 
the potential therapeutic options for MBL-producing strains [45 
and references therein], even if additional promising drugs are 
in advanced stages of the pipeline (e. g., cefepime/taniborbac
tam, cefepime/zidebactam) [47].

The description of the OXA-48 carbapenemase in 2004 [42] 
was followed by the detection of several variants, with OXA- 
181 and OXA-232 rapidly emerging on a global scale [48–50 
and references therein].

OXA-48-like enzymes show distinct features in terms of 
hydrolytic profile. In general, these enzymes efficiently hydro
lyze narrow-spectrum β-lactams, while often sparing extended 

Article highlights

● Klebsiella pneumoniae is a highly versatile pathogen, playing 
a primary role in opportunistic healthcare-associated infections, and 
being relevant also in some community-acquired infections.

● K. pneumoniae exhibits high propensity to develop resistance to 
antibiotics, including carbapenems, and carbapenem-resistant 
K. pneumoniae (CR-Kp) contribute for the majority of carbapenem- 
resistant Enterobacterales globally.

● In CR-Kp, resistance to carbapenems is mostly due to acquisition of 
plasmids encoding carbapenemases of different types and, often, 
additional resistance determinants.

● Highly diverse carbapenemase-encoding plasmids have evolved, con
tributing to successful dissemination of carbapenem resistance 
among some high-risk clonal lineages of K. pneumoniae.

● Recombination events involving plasmids and/or associated mobile 
genetic elements can contribute to accretion of resistance determi
nants and expansion of the resistance phenotype.

● Plasticity of plasmids and cognate mobile genetic elements can also 
modulate resistance via alteration of the gene dosage, affecting 
resistance to some novel β-lactamase inhibitor combinations.

● Convergence in a single isolate of resistance and virulence plasmids, 
or of hybrid derivatives thereof, can promote the emergence of 
carbapenem-resistant and highly virulent pathotypes of 
K. pneumoniae, representing a worrisome clinical evolution.
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spectrum cephalosporins and showing only a weak activity 
toward carbapenems. Indeed, susceptibility to carbapenems 
and extended spectrum cephalosporins may vary significantly 
among OXA-48-producing isolates, depending on permeabil
ity issues and the co-production of other β-lactamases [49], 
which may hamper the identification of these resistance 
mechanisms. Indeed, OXA-48-like enzymes display heteroge
neous hydrolytic activity toward carbapenems, e. g., OXA-181 
is a stronger carbapenemase than OXA-48, while OXA-232 has 
a weaker activity and OXA-163 is not attacking carbapenems 
at all [48].

3. Plasmids involved in acquired resistance to 
carbapenems

Plasmids play a crucial role in the dissemination of resistance 
genes in K. pneumoniae. The major carbapenemase-encoding 
genes (i. e., blaKPC-, blaNDM-, blaVIM-, blaIMP- and blaOXA-48-type) 
are mostly located on plasmids, which facilitate intra- and 
inter-species horizontal transfer of these resistance determi
nants. In fact, during the last three decades, acquisition of 
carbapenemase genes through plasmids has largely contribu
ted to shaping the carbapenemase-producing K. pneumoniae 
(CP-Kp) population worldwide [51–53].

A remarkable variety of plasmid replicons has been reported 
in CP-Kp, including IncF, C, X3, L, M, N, R, HI1B, and Col (Table 1; 
for details on bioinformatics methods followed to collect and 
analyze carbapenemase-encoding plasmids see Supplementary 
Material M1), underscoring the wide distribution of carbapene
mase genes across a variety of plasmid scaffolds. Moreover, 
several of these carbapenemase-encoding plasmids possess 
multiple replicons (two or three), which may confer an evolu
tionary advantage for spreading and maintenance in different 
bacterial species [54–56] (Tables 1 & S1).

Aboard plasmids, carbapenemase genes are typically asso
ciated with mobile genetic elements (MGEs), such as transpo
sons, insertion sequences (IS), and integron-associated mobile 
gene cassettes, which may contribute to their dissemination 
among different plasmid platforms and also to plasmid rear
rangements, with amplification of the resistance gene dosage 
(which could have relevant clinical implications in terms of the 
resulting resistance phenotype) [57]. The aforementioned plas
mids, almost invariably, carry other resistance determinants 
providing additional selective advantages in the clinical set
ting, and allowing en-bloc horizontal transfers of arrays of 
resistance genes responsible for complex multi-drug resistant 
(MDR) phenotypes [52,58].

3.1. Genetic structures of carbapenemase-encoding 
plasmid prototypes and associations of multiple 
resistance plasmids

3.1.1. IncFII replicons
One of the most prevalent plasmid type carrying variants of 
blaKPC or blaNDM genes is the IncFII replicon. Additional origins 
of replication (e. g., IncFIB, IncR and repBR1701) commonly co- 
exist in IncFII plasmids, thus conferring a broader host range 
[59,60].

The first described IncFII carbapenemase-encoding plas
mid, pKpQIL, is a conjugative plasmid with a scaffold similar 
to pKPN4 (accession no. CP000649) but carrying blaKPC-3 

(Figure 1). Following first description in a K. pneumoniae clin
ical strain isolated in Israel [59,61], pKpQIL-like plasmids were 
found associated with the global spread of KPC-2/KPC-3 
enzymes among the KPC-Kp clinical populations [51,62–65]. 
The scaffold of pKpQIL includes genes involved in plasmid 
transfer, partitioning and stability and carries two replicons, 
FIBpQil and IncFIIpKP91. The blaKPC-3 gene is bracketed by two IS 
elements, ISKpn7 and ISKpn6, and is part of a Tn3-related 
transposon (Tn4401) [66] (Figure 1). Apart from Tn4401, the 
scaffold is punctuated with various IS elements (IS26, ISKpn14, 
ISKpn25 and ISKpn31) that may facilitate rearrangements, such 
as duplications/insertions/deletions, or recombinations with 
other plasmids [57]. This genetic plasticity has resulted in 
a number of pKpQIL-like plasmid derivatives possessing two 
or even three copies of the blaKPC gene, as well as deletions of 
segments containing other resistance genes, and in the for
mation of hybrid/chimeric IncFII plasmids encoding KPC-type 
carbapenemases [64].

A similar IncFIBpQil/IncFIIpKP91 replicon, designated as plas
mid p2, was found to encode the NDM-1 MBL [67]. This 
plasmid type was first isolated in the U.S.A. (from a patient 
originating from North Africa), but subsequently it has been 
reported from various countries (Table 1).

Another distinct group of IncFII plasmids possessing 
IncFIIpKP91/IncR replicons is strongly associated with KPC and 
NDM production. This plasmid group is mainly harbored by 
multilocus sequence type 11 (ST11) CR-Kp strains isolated in 
China (Table 1), and the main representative is the mosaic 
pKP048 conjugative plasmid [60]. The blaKPC-containing 
genetic platform differs from that of Tn4401 by having 
a core segment comprising ISKpn8-blaKPC-2-ISKpn6. At the 
boundaries of this core segment are located a Tn1721 and 
a Tn3 forming, along with the core segment, the Tn6296 
transposon which is one of the major mobile platforms carry
ing blaKPC in China [60,68]. The pKP048 carries also IS26 ele
ments as well as additional insertion sequences (IS4321, 
ISEc28, ISEc29, ISCR1, ISKpn14 and ISKpn24) which are scattered 
in the plasmid backbone and resistance region (Figure 1).

3.1.2. IncL replicons
IncL replicons belong to the broad host range IncL/M family of 
plasmids and are associated with the dissemination of OXA- 
48-like-encoding genes. They display extensive sequence 
homology with the backbone of other IncL/M plasmids, 
including the tra locus and the partitioning module. Yet, the 
traX, traY, and excA genes differ significantly [69]. The IncL 
plasmids have been reported worldwide in K. pneumoniae 
(Table 1) and are linked to the production of OXA-48-type 
carbapenemases (OXA-48/162/244/517/519). They were also 
found sporadically associated with blaKPC [69,70].

A prototype of this group is the pOXA-48a plasmid carrying 
the blaOXA-48 gene embedded in a Tn1999 mobile element 
(Figure 1), inserted within the tir locus encoding a transfer 
inhibition protein. Interestingly, the insertional inactivation of 
tir by Tn1999 has been associated with a higher conjugal 
transfer frequency of plasmid pOXA-48a [71]. This genetic 
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configuration has been deemed as a key factor contributing to 
the successful dissemination of pOXA-48a at a global scale. 
Intriguingly, in the case of this prototype plasmid, no other 
resistance genes and mobile elements have been identified. 
Τhe same applies to the majority of plasmids of this type [70].

3.1.3. IncX3 replicons
Several plasmids harboring blaNDM or blaKPC belong to the IncX3 
subgroup of IncX replicons. These plasmids have a high effi
ciency of conjugal transfer and have disseminated in Asian, 
European, and South American countries (Table 1). The proto
type of this group is the NDM-1 encoding pABC52-NDM-1 plas
mid which was found in an ST11 K. pneumοniae clinical isolate 
from the United Arab Emirates [72] (Figure 1). The plasmid back
bone contains intact conjugal transfer and partitioning regions. 
Two β-lactamase genes are present on pABC52-NDM-1, blaNDM-1 

and blaSHV-12. The blaNDM-1 gene is followed downstream by the 
bleomycin resistance gene bleMBL, and this genetic segment is 
surrounded by truncated ISAba125 and ISCR27 elements. In turn, 
this region is flanked by a Tn3 and an IS26 element. The latter is 
located at the edge of the IS26 composite transposon carrying 
the blaSHV-12 gene. A third IS26 element is located upstream 
blaNDM-1. Therefore, a novel putative IS26 composite transposon 
carrying all resistance genes is formed on pABC52-NDM-1, pro
viding an opportunity for further mobilization of this segment to 
other plasmids. Several similar IncX3 plasmids have been 
reported carrying blaNDM (one to five copies in tandem) and 
blaKPC variants (Table 1).

3.1.4. IncC replicons
IncC is yet another group of plasmids that significantly 
contributed to the dissemination of carbapenemase-encod
ing genes among K. pneumoniae and other 
Enterobacterales. The group comprises plasmids with 
extended resistomes including genes for various carbape
nemases such as NDM, KPC, IMP and VIM (Table 1 and Table 
S1). The prototype of this group is considered the pNDM-US 
plasmid [73] (Figure 1). Aboard of this element, blaNDM-1 is 
part of a ΔTn125 transposon with the array of ΔISAba125/ 
blaNDM-1/bleMBL core region. The plasmid carries also blaCMY- 

6 as part of an ISEcp1-derived transposon inserted in the tra 
region and also containing the blc and sugE genes from 
Citrobacter freundii. This genetic structure is preceded by 
a ΔTn1696 transposon and the In46 integron containing the 
aac4 and sul1 genes. ISKpn14, IS4321 and IS3000 are also 
located on the plasmidic scaffold.

3.1.5. ColKP3 replicons
The ColKp3 replicon, that belongs to the ColE plasmid family, is 
strongly associated with the blaOXA-181/232 variants (Table 1). The 
archetype for this group is the OXA-232-encoding pABC120- 
OXA plasmid first reported in 2011 in the United Arab Emirates 
[74]. pABC120-OXA is a small non-conjugative plasmid which 
includes a mob region encoding proteins for the mobilization 
process (Figure 1). blaOXA-232 is the sole resistance gene identi
fied on the replicon and appears as a part of a truncated-Tn2013 
transposon containing only the 3’ end of the ISEcp1 element.

3.1.6. Association of multiple plasmids
K. pneumoniae clinical strains very frequently carry multiple 
resistance plasmids, with carbapenemase-encoding replicons 
often co-existing with plasmids of different incompatibility 
groups carrying other types of carbapenemases, ESBL deter
minants or genes conferring resistance to other classes of 
antibiotics (i. e., to aminoglycosides, fluoroquinolones, colistin, 
sulfonamides, trimethoprim, chloramphenicol, and macro
lides). As a consequence, CP-Kp isolates can exhibit expanded 
resistomes leading to multi- or pan-resistant phenotypes and 
difficult to treat infections. For example, a KPC-producing 
K. pneumoniae strain of ST258 described in Italy harbored 
four plasmids, one carrying blaKPC-3 plus other three with 
a different set of genes contributing to a complex MDR phe
notype [75]. Another paradigm is represented by an ST11 
K. pneumoniae strain from China equipped with four plasmids, 
in which the co-production of the KPC and NDM carbapene
mases together with other 38 plasmid-encoded resistance 
factors has been observed [76]. In addition, a K. pneumoniae 
isolated in South Korea [77] harbored three different plasmids: 
two of them encoded carbapenemases (NDM-1 and OXA-232) 
and the third one the CTX-M-15 ESBL, along with several other 
resistance determinants. It has been proposed that the co- 
existence of the NDM-1 and OXA-232 plasmids is able to 
confer, in addition to an extended resistome, a higher fitness 
and virulence leading to dissemination of these strains even in 
the absence of selective pressure [77].

4. Population structure of carbapenem-resistant 
K. pneumoniae: diversity and role of high-risk clones

The emergence and dissemination of successful K. pneumoniae 
epidemic clones, globally referred as ‘high-risk clones’ (HiRiCs), 
are major drivers of carbapenem resistance spread and of carba
penemase genes dispersal. Since their first definition [78], such 
clonal groups (CG), often represented by few successful STs, 
experienced a global dissemination and exhibited a remarkable 
propensity toward the acquisition of multiple resistance deter
minants, including those for major carbapenemases, mostly 
mediated by the recruitment of successful and epidemic plas
mids. The different CGs display important geographical hetero
geneity in their prevalence, contribution to MDR infections and 
carriage of carbapenem resistance traits, with some of them 
being described as strictly linked with few resistance genes (e. 
g., blaKPC-type carbapenemases), while others being associated 
with a broader spectrum of determinants [52,79].

HiRiCs include the well-studied and widely geographically 
distributed CG11, CG15, CG17, CG20, CG29, CG37, CG101, and 
CG258, and the more recently emerged CG147 and CG307 
[80,81]. Among these, CG258, mostly consisting of two single 
locus variant STs (namely ST258 and ST512), and CG11 repre
sent the most diffused and successful clones of CR-Kp, being 
responsible of large nosocomial outbreaks worldwide and 
endemic dispersal [44] and references therein,[80]. These CGs 
are characterized by different geographical prevalence [79 
and references therein], with CG258 being predominant in 
the Americas, southern Europe and some regions of Asia 
such as Japan and Middle East, and CG11 prevailing in some 
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parts of South America (e. g., Brazil) and Asia (e. g., East Asia 
and China) (Figure 2). CG15, CG17, CG101, CG147, and CG307 
are less diffused, with some of them (e. g., CG15, CG17, and 
CG101) being also traditionally associated with the spread of 
ESBL-type determinants [52]. However, CG147 and CG307 
have emerged globally since the late 2000s as important 
vehicles for the dissemination of carbapenemase genes, 
becoming prominent global clones in some geographical 
areas (e. g., southern Europe, the Indian subcontinent, North 
Africa, and Middle East) [82] (Figure 2).

Since the first description of nosocomial outbreaks sus
tained by KPC-type carbapenemase producers, KPC-Kp popu
lation structure appears to be dominated by the clonal 
expansion of few extremely successful clones [31,78], such 
as CG258 and CG11, that became rapidly endemic in many 
geographic areas (Figure 2); however, in the following years, 
KPC-producing K. pneumoniae epidemiology changed toward 
a more polyclonal scenario, with novel emerging clones (such 
as ST101 and ST307) outcompeting CG258, particularly in 
Europe [52,83–85]. Of note, K. pneumoniae strains belonging 

Figure 1. Schematic representation of genetic structures of carbapenemase-encoding K. pneumoniae prototype plasmids. IncFIBpQil/IncFIIpKP91 pKpQIL (GU595196), 
IncFIIpKP91/IncR pKP048 (FJ628167), IncL pOXA-48a (JN626286), IncX3 pABC52-NDM-1 (MK372381), IncC pNDM-US (CP006661) and ColKP3 pABC120-OXA (MF774791).
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in CG258, which played a major role in the early global 
emergence and dissemination of KPC-type enzymes [31,53], 
have been almost stably associated with IncFIBpQil/IncFIIpKP91 

plasmids (e. g., the pKpQIL plasmid), that first appeared 
within this clonal lineage [59] (Figure 3 and Table S2). 
Indeed, IncFIBpQil/IncFIIpKP91 plasmids appear to be only spor
adically described in other emerging KPC-producing CGs, 
such as CG147 and CG307, that conversely harbor this deter
minant associated with a wider range of replicon types (e. g., 
IncFIBK/IncFIIpKP91, IncC, and IncR plasmids). In CG11, KPC 
dissemination is prevalently linked to IncFIIpHN7A8 plasmids, 
often equipped with other replicons (e. g., IncR replicon); 
such plasmids are almost exclusively described in China, con
sistently with the wide diffusion of CG11 in this geographic 
area [79 and references therein].

NDM-producing K. pneumoniae strains are distributed 
across a vast number of CGs, suggesting that no obvious 
HiRiC can be recognized as responsible for the dissemination 
of this determinant. However, NDM-producing CG11, CG15, 
and CG147 strains are relatively common lineages that have 
been reported globally [86], mostly carrying blaNDM genes on 
IncX3, IncC, and IncFII plasmids. In this polyclonal scenario, 
CG147 likely represents the most prominent epidemic clone 
currently mediating the international spread of blaNDM in the 
Middle East, the Indian subcontinent, Europe and the 
Americas [82,87], also causing large regional outbreaks [88,89].

Differently from what has been observed for the global suc
cess of KPC-type-harboring CG258 and CG11, diffusion of blaOXA- 

48-like determinants appears to be rather linked to a polyclonal 
dissemination and to successful plasmids with high spreading 
ability, such as ColKP3 and IncL plasmids. Nevertheless, certain 
K. pneumoniae HiRiCs (e. g., CG11, CG15, CG101, CG147, CG231, 
and CG307) have been associated with the global dispersion of 
OXA-48-like carbapenemases [90,91], although with significant 
geographical differences. As an example, blaOXA-48 determinants 
dominating the European scenario are mainly associated to 
CG11 and CG147 strains harboring IncL plasmids, while in East 
Asia and in the Indian subcontinent CG231 strains account for 
the majority of blaOXA-232-positive K. pneumoniae (Figure 2) 
[92,93]; in these isolates, ColKP3 plasmids represent the domi
nant structure responsible for OXA-232 dissemination (Figure 3). 
Of note, a significant proportion of CG11 and CG147 OXA-232- 
producing K. pneumoniae (and to a lesser extent of OXA-181 
producers) also co-produce NDM-1, further contributing to wor
sen their complex resistance profile [94–97].

5. Resistance accretion and modulation by plasticity 
of carbapenemase-encoding plasmids: paradigms of 
different epidemiological successes

The presence of multiple plasmid-encoded antibiotic resis
tance genes is frequently observed in contemporary clinical 
isolates of several Gram-negative species [98], appearing to be 
a rule more than an exception in K. pneumoniae. In particular, 
in this species, as well as in other Enterobacterales, carbape
nemase-encoding plasmids often possess additional β-lacta
mases as well as resistance factors to other antibiotic classes, 
therefore acting as genetic platforms able to confer complex 
MDR phenotypes by single transfer events (Table 1).

For example, pKpQIL, the prototype IncFIBpQil/IncFIIpKP91 

blaKPC-3-positive plasmid, carried also blaTEM-1 and inactive 
blaOXA-9 and aadA alleles [52,59,61]. By a bioinformatics analy
sis of complete carbapenemase-encoding plasmids available 
through the National Center for Biotechnology Information 
web-site (Supplementary Material M1), complemented with 
literature search, it can be observed that pKpQIL-like plasmids 
equipped with the same basic set of resistance genes, 
involved in different stages of KPC-Kp pandemic, have been 
described in several countries including the U.S.A. [62], UK 
[99], Greece, Poland [51], Brazil [100], Norway [101], Italy [64], 
China [65], and Taiwan [52,102]. In some cases, these replicons 
carried an expanded resistome including also genes coding for 
aminoglycoside modifying enzymes and for resistance to tri
methoprim/sulfamethoxazole [75,98,103–105]. Lately, 
IncFIBpQil/IncFIIpKP91 plasmids with blaNDM-1, blaNDM-5 or 
blaOXA-232, and characterized by different arrays of quinolone, 
aminoglycosides, rifampicin, and macrolide resistance genes 
have also been described [67,106,107], underscoring the plas
ticity and evolutionary potential of such elements. In these 
plasmids blaNDM-1 is frequently associated with the blaCTX-M-15 

ESBL gene, quinolone and aminoglycoside resistance genes (e. 
g., qnrS1/qnrB1 and aac(3’)-VI/aac(6’)-Ib variants and rmtF1, 
respectively) [67,108,109], while blaNDM-5 has been found 
together with aminoglycoside, chloramphenicol and trimetho
prim/sulfamethoxazole resistance genes (e. g., rmtB1 together 
with rmtF1, catA1/catB and dfrA12/sul1, respectively) [110], and 
with the blaSHV-12 ESBL, rifampicin, chloramphenicol, amino
glycosides, and trimethoprim/sulfamethoxazole resistance 
genes, even in combination with blaOXA-232. It is worth noting 
that the presence of genes encoding the RmtF or RmtB 16S 
rRNA methylases, often observed in IncFIBpQil/IncFIIpKP91 NDM- 
positive plasmids, is associated with a pan-aminoglycoside 
resistance phenotype including the recently approved amino
glycoside plazomicin [111].

Very often, MDR plasmids evolve over time through large 
genetic rearrangements, creating hybrid structures composed 
not only by multi-replicons, but also exhibiting complex resis
tance genes arrangements. As an example, blaKPC genes have 
been found to be located either on several Tn4401 isoforms or 
on different genetic structures which are associated to 119 
single replicons or replicons combinations (Table 1 and Table 
S1). Similarly, blaNDM, and blaOXA-48-like genes have been 
found located on plasmids belonging to more than 70 and 
35 single or multiple incompatibility groups, respectively. 
However, despite this remarkable genetic diversity, in several 
cases a restricted number of plasmid structures are often 
found in K. pneumoniae clinical isolates from different coun
tries and, on some occasions, these latter replicons experi
enced an extraordinary epidemiological success. For 
example, KPC-encoding IncFIIpHN7A8/IncR plasmids frequently 
encoding CTX-M-15, SHV or TEM β-lactamases, as well as 
RmtB, have been repeatedly reported in China from 2010 
and sporadically in other countries including Egypt [112] and 
Taiwan [113]. IncFIIpHN7A8/IncR plasmids, the most represented 
structures in public nucleotide databases by far, are strictly 
associated with a single type of carbapenemase gene, i. e., a 
blaKPC allele, and have been described mostly in CG11 isolates 
(Figure 3).
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KPC- or NDM-encoding IncFIIpKP91/IncR MDR-plasmids have 
been described in China but also in Europe [114,115], 
Northern Africa, Bangladesh, and U.S.A.. In some cases (e. g., 
plasmids pKP048 and pNDM-US), AmpC-type β-lactamase 
genes (blaDHA-1, blaCMY-6) and a variety of other resistance 
determinants (armA, rmtC, aacA4, mph(E), msr(E), qnrB4, sul1), 
conferring resistance to several antibiotic classes, were also 
present [60,73].

IncL plasmids carrying blaOXA-48 or IncC replicons positive 
for NDM-1, aminoglycoside, chloramphenicol, and trimetho
prim/sulfamethoxazole resistance genes, have experienced 
a world-wide dissemination. Description of related plasmid 
backbones in multiple continents has also been reported for: 
i) KPC- or NDM-encoding IncX3 plasmids; ii) OXA-181/OXA- 
232-encoding ColKP3 plasmids, where non-β-lactam resistance 
genes were mostly absent; iii) IncN plasmids encoding KPC 

Figure 2. Geographical distribution and prevalence of carbapenemases genes among K. pneumoniae. Graphs were obtained using data from publicly available 
genomic sources https://www.ncbi.nlm.nih.gov/nucleotide/, last accessed on June 2023). Areas with endemic, outbreaking or sporadic description of carbapene
mases-producing strains are shown. Prevalence of the different carbapenemases genes is reported as percentage over total number of records for each geographical 
area; prevalences > 5% are detailed in the graph. For each determinant, the three most frequent CGs associations are indicated. Only CGs accounting for > 5% of the 
strains are reported and CGs covering ≥ 25% of the carbapenemases-producing strains are shown in bold.

Figure 3. Panel A. Heatmap showing prevalence of plasmids (n = 1,346) harboring different replicon types among K. pneumoniae CGs, expressed as percentage of 
occurrence of each replicon type among CGs over total number of each category of plasmids (data source: https://www.ncbi.nlm.nih.gov/nucleotide/, last accessed 
August 28, 2023). Only replicon types occurring with a frequency ≥ 1% are shown. Panel B. Numerosity of each replicon type group of plasmids. Panel 
C. Prevalence of carbapenemase determinants and their combinations (%) among each plasmid group.
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and NDM-positive IncFII replicons, both mostly associated to 
aminoglycoside, chloramphenicol, and trimethoprim/sulfa
methoxazole resistance genes; iv) IncR KPC-producing plas
mids equipped with aminoglycoside and chloramphenicol 
resistance genes and v) IncHI1BpNDM-MAR/IncFIBpNDM-Mar NDM 
plasmids carrying aminoglycoside, quinolone, and chloram
phenicol resistance genes. It is interesting to underscore that 
in some carbapenemase-positive plasmids (e. g., those having 
IncL and ColKP3 replicons), a single resistance factor is fre
quently found (i. e., a blaOXA-48-like gene). A similar finding is 
also observed for IncX5 plasmids, where blaKPC-type β-lacta
mases are the only resistance gene detected.

Beyond these examples of genetic linkage of multiple resis
tance genes in single plasmids (i. e., accounting for resistance 
accretion), which have led to the epidemiological success of 
some elements, plasmids can further provide their hosts with 
the ability to evolve alternative antimicrobial resistance stra
tegies. Accordingly, plasmids can act as drivers of rapid phe
notypic changes, playing a primary role in resistance 
modulation other than accretion.

This concept is well exemplified by the recent description 
of KPC-Kp resistant to novel BLICs, such as CZA, meropenem/ 
vaborbactam (MVB) and imipenem/relebactam (IMR), which 
represented a major breakthrough in the treatment of some 
infections caused by carbapenem-resistant Enterobacterales 
(CRE) [23,116]. Several reports highlighted how an increased 
number of KPC-encoding plasmids per cell following altera
tions of the repA2 gene, which encodes a factor involved in 
plasmid maintenance and replication functions, resulted in 
resistance to CZA and MVB [117,118]. A consequence of this 
copy-number variation strategy is that any plasmid-borne 
resistance genes, such as blaKPC in the aforementioned cases, 
will also be multicopy, leading to potentiation of the resis
tance phenotype through a greater gene expression.

Consequently, even if KPC-2 or KPC-3 variants do not con
fer resistance to novel BLICs when produced at basal levels, 
the variation of the blaKPC gene dosage observed upon multi
merization of the blaKPC-harboring transposon Tn4401 (e. 
g., multiple copies aboard on the same plasmid or on different 
elements) was consistently associated with a gain in resistance 
to CZA and MVB, but not IMR [103]. Interestingly, depending 
on the magnitude of the blaKPC gene dosage, which can be 
contributed by an increased number of KPC-encoding plasmid 
per cell, by duplication of Tn4401 or by combination of both 
mechanisms, cross-resistance to CZA, MVB, and IMR can be 
observed among KPC-Kp [103].

6. Evolution of hybrid plasmids encoding resistance 
and virulence traits

From a clinical standpoint, K. pneumoniae can be considered 
a successful and highly versatile human pathogen, capable of 
causing both HCAIs and community-acquired infections 
(CAIs) that could greatly differ in their presentation and 
severity [10,119]. While opportunistic HCAIs usually affect 
vulnerable patient groups (e. g., neonates, elderly) with 
comorbidities, who are immunocompromised and/or have 
barriers impairment (e. g., intravascular devices, endotracheal 
tube, or surgical wound), CAIs are often diagnosed in 

otherwise healthy individuals of any age, who do not share 
the risk factors for HCAIs (e. g., intestinal carriage), showing 
a propensity to present with a rapidly progressing invasive 
disease (e. g., pyogenic hepatic and splenic abscesses, septic 
endophthalmitis with subsequent metastatic spread), which 
is an uncommon trait of K. pneumoniae and other enterics 
[10,120,121].

These clinical presentations largely reflect the existence of 
two K. pneumoniae pathotypes, represented by ‘classic’ (cKp) 
and hypervirulent (hvKp) K. pneumoniae (Figure 4), as results of 
two distinct evolutionary trajectories of the species [10,119,122].

Traditionally, cKp are well known for their ability to accu
mulate resistance, which led to the emergence of MDR-Kp, 
while features of hvKp are less well defined, but most com
monly include high invasiveness and susceptibility to multiple 
antibiotics [10].

MDR-Kp and hvKp, however, present additional significant 
differences at epidemiological and genetic level (Figure 4). 
Owing to the emergence of diverse successful HiRiCs (e. g., 
ST11, ST258/512, ST147, and ST307), MDR-Kp have spread 
globally and extensively acquired resistance plasmids encod
ing multiple resistance determinants, as observed with ESBL- 
and/or CP-Kp [53]. Conversely, hvKp became prevalent in the 
Asian-Pacific region, where they first emerged in mid-1980 
and were linked to a high prevalence of hypervirulent disease 
[123,124], even though hvKp are increasingly reported world
wide nowadays [53,124].

A hallmark feature of hvKp is represented by the carriage of 
large, typically non-conjugative, plasmids harboring genes 
related to increased virulence, as observed with the prototype 
IncHI1BpNDM-MAR/repBKLEB_VIR virulence plasmid pLVPK (from 
K. pneumoniae strain CG43, ST86, K2), and the cognate 
pK2044 (from K. pneumoniae strain NTUH-K2044, ST23, K1) 
(Figure 4) [125,126]. These plasmid-borne virulence factors 
typically consist in: i) regulators of the mucoid phenotypes 
(RmpADC, RmpA2) and ii) siderophore systems (i. e., aerobac
tin, salmochelin, yersiniabactin), specialized iron chelators con
tributing to the high pathogenicity of hvKp under iron-limiting 
conditions (Figure 4) [127].

Despite MDR-Kp and hvKp have been historically regarded 
as well segregated pathotypes, this distinction has become 
less evident in more recent years due to the convergence of 
their plasmidomes, leading to the emergence of strains simul
taneously exhibiting hyper-resistance (i. e., carbapenem resis
tance) and hyper-virulence traits [122]. The emergence of 
convergent strains poses a significant public health threat, 
and it has been to date reported in Asia, Europe, North, and 
South America [128]. Several studies employing whole-gen
ome sequencing to perform an in-depth characterization of 
bacterial strains showed that this convergence can be overall 
attributed to three evolutionary routes (Figure 4): i) acquisition 
of resistance plasmids, or other mobile genetic elements, 
carrying multiple resistance genes (primarily blaKPC-2 and 
blaNDM-1) by typical hvKp lineages, evolving into hvKpMDR 

[129–131]; ii) acquisition of virulence plasmids by MDR-Kp 
lineages, evolving into MDR-Kphv [89,132–135]; iii) emergence 
of hybrid plasmids (pMDR:hv), as a result of recombination 
between canonical resistance and virulence plasmids from 
MDR-Kp and hvKp, respectively [128,136–140].
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The latter trajectory has gained major attention for three 
reasons, at least. First, genomic investigations suggested that 
MDR-Kp are more prone to acquire virulence genes than hvKp 
are to acquire resistance genes [80], so that the emergence 
and spread of MDR-Kphv lineages equipped with pMDR:hv in the 
clinical setting could account more frequently for severe dis
eases. Second, the carriage of resistance and virulence deter
minants in a single mosaic plasmid enables the co-selection of 
both factors by a single transfer event; this raises an intriguing 
issue in that the extensive use of antimicrobial agents in the 
clinical setting could positively select for K. pneumoniae 
lineages carrying virulence determinants. Lastly, the emer
gence of pMDR:hv plasmids encoding carbapenem resistance 
has been increasingly reported from 2016 onward 
[89,124,127,141,142]. This phenomenon appears primarily 
mediated by the spread of hybrid IncFIBpNDM-Mar/ 
IncHI1BpNDM-MAR plasmids, and of IncHI1BpNDM-MAR/ 
repBKLEB_VIR or IncHI1BpNDM-MAR to a lesser extent, encoding 
aerobactin, regulators of the mucoid phenotype, the ArmA or 
RmtB 16S rRNA methylases together with NDM (i. e., NDM-1, 
NDM-5, NDM-29), KPC (i. e., KPC-2) or OXA-48-like (i. e., OXA- 
48, OXA-181, OXA-232) carbapenemases. These elements have 
been detected in K. pneumoniae from UK (2016–2018), Qatar 
(2016), China (2017–2022), Russia (2017–2021), Turkey (2016– 
2019), Poland (2018), and more recently from Italy, Czech 
Republic, India (2019) and the US (2022), and are associated 
to several clonal lineages (i. e., ST11, 15, 23, 35, 39, 43, 48, 147, 
268, 307, 336, 377, 383, 395, 874, 2096) [109,141–144] 
(Table S3).

Compelling evidence suggests that plasmids exchanges 
between successful pathotypes of K. pneumoniae (i. e., hvKp 
and MDR-Kp) represent the main culprit driving the evolution 
of this species. In this context, the increasingly reported emer
gence of pMDR:hv plasmids encoding KPC- or NDM-type carbape
nemases and virulence-associated factors raises relevant clinical 
implications [79]. Although the carriage of genetic biomarkers 
strongly associated with hvKp is not a perfect surrogate for the 
hypervirulent phenotype in vivo, it should be noted that the 
acquisition of multiple siderophore systems has been recently 
shown to have a significant impact on cefiderocol, a recently 
approved siderophore cephalosporin with a potent anti-CRE 
activity [145,146]. As such, a lower activity of cefiderocol could 
be likely observed in these hvKp or emerging MDR-Kphv lineages 
because of a decreased drug uptake [147], further narrowing the 
available treatment options against CRE.

Of note, recent studies showed that both carbapene
mase-encoding plasmids (i. e., carrying blaKPC or blaNDM) or 
virulence plasmids can be transferred among these 
K. pneumoniae pathotypes via formation of outer mem
brane vesicles (OMVs) [148,149], spherical bilayer lipo
somes originating from the cell envelope of Gram- 
negatives [150], further advancing the knowledge about 
the molecular crosstalk between MDR-Kp and hvKp. Thus, 
as part of the bacterial secretome, OMVs represent a novel 
mechanism of horizontal gene transfer (i. e., in addition to 
plasmid conjugation), providing plasmids with an addi
tional path for their dissemination and evolution.

It is clear that the epidemiology of MDR-Kp and hvKp is 
becoming more complex, with increasingly blurred limits 

between these pathotypes. Infection control practitioners 
and clinicians need nonetheless clinical microbiologists to 
rapidly identify and characterize these strains to promptly 
minimize their spread in the clinical setting. However, 
although several features of hvKp have been framed to date, 
there is no single genotypic of phenotypic biomarker that can 
define alone the hypervirulence phenotype, which is most 
likely the result of a complex interplay of multiple factors (e. 
g., capsular types, siderophores, hypermucoviscosity) [151]. 
This notion is largely supported by studies indicating that 
not all strains producing a K1 or K2-type capsule, or 
a defined subset of siderophores, are hvKp [10]; likewise, 
hypermucoviscosity should not be considered pathognomonic 
for hvKp (i. e., rather, just suggestive of hvKp), since this 
phenotype can be also exhibited by MDR-Kp [10].

7. Gut microbial communities as hot-spots for 
transmission and persistence of resistance plasmids

It is well known that both the patient-to-patient dissemination 
of successful HiRiCs and the horizontal transfer of carbapene
mase-encoding plasmids between enterics find their place 
among the major trajectories shaping the epidemiology of 
CR-Kp (and more broadly of CRE) in the clinical setting. 
Although the relative contribution of each path remains diffi
cult to establish, evidence for a pervasive within-patient trans
mission of carbapenemase-encoding plasmids from CR-Kp has 
recently been provided [152]. Horizontal gene transfer 
mediated by conjugative plasmids (as well as by other MGE) 
is regarded as a major driver of bacterial evolution and diver
sification, since plasmids’ sharing is unlikely to occur solely in 
isolated single-species populations. This translates into the 
spread of conjugative carbapenemase-encoding plasmids 
from CR-Kp to other resident members of the gut microbiota 
(e. g., Escherichia coli, C. freundii, Enterobacter cloacae), once 
patients become colonized. Such trafficking provides plasmids 
with an increased chance to stably persist within the gut 
microbiota, and the bacterial hosts with an increased oppor
tunity of accumulating even more resistance.

8. Conclusions

Over the past decades, CR-Kp emerged as a major public 
health threat, and its global dissemination largely contributed 
to the escalating burden of CRE [12,119]. This landscape was 
largely contributed by the notable ability of K. pneumoniae in 
acquiring, maintaining, and disseminating plasmids, which 
provided efficient platforms for the maintenance and disper
sion of clinically relevant resistance determinants, including 
carbapenemases [51,127]. Indeed, carbapenemase-encoding 
plasmids played a pivotal role in evolution of carbapenem 
resistance in K. pneumoniae.

Modern advances in sequencing technologies have sig
nificantly improved our ability to decipher the huge diversity 
of plasmids involved in dissemination of carbapenem resis
tance determinants, and factors underlying their epidemio
logical success. The remarkable plasticity of plasmids, 
together with the genetic background provided by some 
successful epidemic clones of K. pneumoniae, overall resulted 
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in multiple dissemination pathways of carbapenemase 
genes. In fact, while some enzymes (e. g., OXA-48) have 
spread primarily via a single epidemic plasmid, which rapidly 
emerged in the clinical setting owing to its enhanced trans
fer abilities and pervasive diffusion among several HiRiCs 
[32,153,154], other carbapenemases (e. g., VIM and NDM) 
have spread via promiscuous associations of many diverse 
plasmids with diverse clonal lineages [32,127,155,156], with 

histories of variable success. Conversely, the stable associa
tion and coevolution of a single plasmid element with 
a given clonal lineage has been regarded as a key factor 
driving the global emergence and dissemination of other 
enzymes (e. g., KPC) [157].

The fast plasmid evolution through mutation and recombi
nation events, as well as by gain or loss of MGE associated 
with resistance determinants, was another key factor 

Figure 4. Overview of clinical and microbiological features of hypervirulent and classic (multidrug resistant) K. pneumoniae pathotypes and possible convergent 
evolutionary pathways. Panel A. Anatomical sites of documented infections by hypervirulent K. pneumoniae (hvKp) and classic K. pneumoniae (cKp) exhibiting 
a multidrug resistant phenotype (MDR-Kp); the panel was partially adapted from Gonzalez-Ferrer S. et al. [122]. Panel B. Epidemiological and genotypic features 
most frequently associated with the hvKp and MDR-Kp pathotypes. Panel C. Documented evolutionary paths involved in genetic convergence of resistance and 
virulence traits in K. pneumoniae.
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contributing to the success of these elements [158,159]. 
Indeed, owing to their high genetic plasticity, plasmids can 
mediate both accretion and modulation of antimicrobial resis
tance, resulting in drastic phenotypic changes. In that regard, 
the recent description of CR-Kp strains producing novel KPC 
variants (e. g., KPC-31) associated with reduced susceptibility 
to CZA and cefiderocol, and of strains exhibiting an increased 
blaKPC gene dosage mediating cross-resistance to novel BLICs 
(i. e., CZA, MVB, IMR), are paradigmatic examples of these 
abilities [23,103,160,161].

The observation that carbapenem resistance in 
K. pneumoniae is mainly mediated by genes located on plas
mids poses also relevant hurdles from an infection prevention 
and control point of view. Indeed, plasmids can often disse
minate intra- and inter-species, thus providing a gene pool 
easily accessible to bacteria belonging to different taxonomic 
groups and ecosystems [162], possibly causing ‘plasmid- 
mediated gene epidemics’ [51]. Indeed, in some cases (e. 
g., for OXA-48 and KPC), plasmid-encoded carbapenemases 
could be silently disseminated in bacteria, considering that 
the presence of a given carbapenemase gene could lead to 
higher carbapenem MICs that are still lower than resistance 
breakpoints [163,164]. Moreover, the use of automated sys
tems for antimicrobial susceptibility testing may not efficiently 
detect all carbapenemase producers [165], hampering the 
possibility of implementing more powerful tools for epidemio
logical surveillance such as those based on genome 
sequencing.

Taken together, these findings point out that plasmids can 
behave as highly plastic genetic toolkits, providing formidable 
evolutionary opportunities to K. pneumoniae, likely explaining 
its successful emergence and persistence in clinical settings.

9. Expert opinion

K. pneumoniae has been well established in the hospital envir
onment and is a leading cause of HCAIs. Although naturally 
susceptible to several antibiotics, K. pneumoniae is a notorious 
‘collector’ of MDR plasmids, including those carrying carbape
nemase genes. As a consequence, we have witnessed a global 
crisis of unprecedented dimensions due to the rapid dissemi
nation of carbapenem resistance among K. pneumoniae [15]. 
Indeed, CP-Kp have been identified worldwide and are con
sidered one of the most important clinical and public health 
issues, contributing to one of the modern epidemics.

The worldwide spread of CR-Kp strains can be viewed as an 
ecological consequence of the interaction between the over
use of antimicrobial agents in healthcare environments and 
the underlying biological machinery governing the emer
gence, establishment, and dissemination of carbapenemase- 
encoding determinants in the K. pneumoniae population.

As it has been discussed here, two are the key players for the 
spreading of carbapenemases and the shaping of CP-Kp popula
tion, namely successful bacterial clones and, most importantly, 
plasmids, and associated MGEs [19,51,52,57,58]. This complex 
epidemiological picture is based on the emergence and estab
lishment of CP-Kp HiRiCs in different clinical settings and the 
existence of a huge variability of carbapenemase-encoding plas
mids, including different replicons, multireplicons, chimeric 

plasmids, and genetic platforms carrying carbapenemase 
genes, that can be transferred to other bacterial species. In CP- 
Kp clones, carbapenemase genes are almost invariably asso
ciated to a wide repertoire of other antibiotic resistance genes 
carried either by the same or different plasmids. These arrange
ments ultimately led to the emergence of complex MDR pheno
types, including resistance to aminoglycosides, 
fluoroquinolones, trimethoprim-sulfamethoxazole, chloramphe
nicol, and tetracyclines [52,58]. Horizontal gene transfer plays 
a fundamental role in the continuously changing pattern of CP- 
Kp resistomes, dynamically shaping their MDR phenotypes. 
Moreover, the convergence of carbapenemase-encoding and 
virulence plasmids has led to the emergence of novel 
K. pneumoniae pathotypes, as hvKp clones that are also resistant 
to carbapenems [10,122]. To that end, plasmids and associated 
mobile structures are important contributors for the evolution 
and diversification of CP-Kp population, through acquisition of 
novel genetic elements, genes, or new mutations. The result of 
this reshuffling, which cannot be predicted, has a huge impact 
on the available treatment options for CP-Kp, which can become 
very limited. Different scenarios have been proposed based on 
different plasmid/lineages combinations (e. g., one plasmid/mul
tiple lineages as for blaOXA-48-like, multiple plasmids/multiple 
lineages as for blaVIM and blaNDM, and multiple plasmids/one 
lineage for blaKPC), which should be taken into consideration 
for the investigation of carbapenemase producers by surveil
lance systems and for the design of new infection control inter
ventions [32].

The large body of research on CP-Kp (a) elucidated the sce
narios underlying transmission of these strains at local, national, 
and international level, which are clonal or in other cases plasmid 
epidemics [32]; (b) deciphered the resistome and the genetic 
features of circulating carbapenemase-encoding plasmids 
[51,52,58]; (c) allowed the designing of novel diagnostic meth
odologies for the reliable identification of carbapenemases 
[19,116]; (d) led to the development of epidemiological tools 
for surveillance purposes; and (e) provided new insights that 
can be used for the development of novel therapeutic 
approaches targeting CP-Kp infections [19,116].

On the other hand, the observed phenotypic and 
genetic variability of carbapenemase producers and the 
respective vehicles/plasmids poses two main drawbacks. 
Firstly, in some cases, carbapenemases conferring unusual 
resistance profiles are not correctly identified by existing 
diagnostic tests. Secondly, the implementation of rational 
infection control policies is hampered by the rapid adapta
tion potential of CP-Kp strains and by the emergence of 
novel carbapenemases of diverse origin that can evade 
their detection by a targeted active surveillance system. 
Owing to the plasticity and evolutionary potential of car
bapanemase-encoding plasmids, it should be pointed out 
that continuous study of the biology of resistance plasmids 
is imperative for designing rational policies to control their 
dissemination, as well as to find novel treatments for CP- 
Kp infections. In addition, CP-Kp strains can serve as a pool 
of carbapenemase gene donors to other Enterobacterales, 
further pointing out the importance to limit the spread of 
such strains in the clinical setting as soon and as effec
tively as possible.
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In the near future, integrated approaches for the study of CP- 
Kp infections are needed in order to translate basic knowledge 
into clinical interventions. As the epidemic progresses, the aim 
should be i) to accumulate additional genomic data for carbape
nemase producers, which have been reported to evolve rapidly, ii) 
to develop new rapid diagnostic tools, enabling detection of 
emerging resistance mechanisms (e. g., carbapenemase genes 
copy number variations, enzymatic variants posing challenges 
for laboratory testing, mutations conferring major phenotypic 
changes in antibiotic susceptibility) and iii) based on the above, 
to improve monitoring systems allowing a fast, real-time, recogni
tion of known or emerging threats. Moreover, the development of 
Clinical Decision Supporting Systems based on clinical, epidemio
logical, microbiological, and genomic data would assist therapeu
tic decisions and would lead to the optimization of therapeutic 
protocols. The stakeholders for these efforts are academics, 
researchers, Public Health Authorities, and the pharmaceutical 
industry.
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